Using self-organizing maps to learn geometric hash functions for model-based object recognition
نویسندگان
چکیده
A major problem associated with geometric hashing and methods which have emerged from it is the nonuniform distribution of invariants over the hash space. This has two serious effects on the performance of the method. First, it can result in an inefficient storage of data which can increase recognition time. Second, given that geometric hashing is highly amenable to parallel implementation, a nonuniform distribution of data poses difficulties in tackling the load-balancing problem. Finding a "good" geometric hash function which redistributes the invariants uniformly over the hash space is not easy. Current approaches make assumptions about the statistical characteristics of the data and then use techniques from probability theory to calculate a transformation that maps the nonuniform distribution of invariants to a uniform one. In this paper, a new approach is proposed based on an elastic hash table. In contrast to existing approaches which try to redistribute the invariants over the hash bins, we proceed oppositely by distributing the hash bins over the invariants. The key idea is to associate the hash bins with the output nodes of a self-organizing feature map (SOFM) neural network which is trained using the invariants as training examples. In this way, the location of a hash bin in the space of invariants is determined by the weight vector of the node associated with the hash bin. During training, the SOFM spreads the hash bins proportionally to the distribution of invariants (i.e., more hash bins are assigned to higher density areas while less hash bins are assigned to lower density areas) and adjusts their size so that they eventually hold almost the same number of invariants. The advantage of the proposed approach is that it is a process that adapts to the invariants through learning. Hence, it makes absolutely no assumptions about the statistical characteristics of the invariants and the geometric hash function is actually computed through learning. Furthermore, SOFM's "topology preserving" property ensures that the computed geometric hash function should be well behaved. The proposed approach, was shown to perform well on both artificial and real data.
منابع مشابه
Using Self-Organizing Maps to Learn Geometric Hash Functions for Model-Based Object Recognition - Neural Networks, IEEE Transactions on
A major problem associated with geometric hashing and methods which have emerged from it is the nonuniform distribution of invariants over the hash space. This has two serious effects on the performance of the method. First, it can result in an inefficient storage of data which can increase recognition time. Second, given that geometric hashing is highly amenable to parallel implementation, a n...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملA new learning algorithm for incremental self-organizing maps
An incremental and Growing network model is introduced which is able to learn the topological relations in a given set of input vectors by means of a simple Hebb-like learning rule. First an overview of the most known models of Self-Organizing Maps (SOM) is given. Then we propose a new algorithm for a SOM which can learn new input data (plasticity) without degrading the previously trained netwo...
متن کاملCombining Self Organizing Maps and Multilayer Perceptrons to Learn Bot-Behavior for a Commercial Game
Traditionally, the programming of bot behaviors for commercial computer games applies rule-based approaches. But even complex or fuzzyfied automatons cannot really challenge experienced players. This contribution examines whether bot programming can be treated as a pattern recognition problem and whether behaviors can be learned from recorded games. First, we sketch a technical computing interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1998